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SUMMARY

New test cases for frictionless, three-dimensional hydrostatic flows have been derived from some known
analytical solutions of the two-dimensional shallow water equations. The flow domain is a paraboloid of
revolution and the flow is determined by the initial conditions, the nonlinear advective terms, the Coriolis
acceleration and by the hydrostatic pressure. Wetting and drying is also included.

Some specific properties of the exact solutions are discussed under different hypothesis and relative
importance of the forcing terms. These solutions are proposed for testing the stability, the accuracy and
the efficiency of numerical models to be used for simulating environmental hydrostatic flows.

The computed solutions obtained with a semi-implicit finite difference—finite volume algorithm on
unstructured grid are compared with the corresponding analytical solutions in both two and three space
dimension. Excellent agreement are obtained for the velocity and for the resulting water surface elevation.
Comparison of the computed inundation area also shows a good agreement with the analytical solution with
degrading accuracy observed when the inundation area becomes relatively large and for long simulation
time. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years numerical modelling of free-surface hydrodynamics has been successfully addressed
by means of two and three-dimensional numerical methods that are routinely used for the numerical
simulations of hydrostatic flows in environmental problems. Several different numerical methods
have been developed, tested and applied during the last three decades. These range from finite
differences (see, e.g. References [1, 2]), finite elements (see, e.g. References [3–6]) to finite volume
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methods (see, e.g. References [7–9]). The time discretization adopted can be explicit [10], mode
splitting [11, 12], or semi-implicit [1–9, 13–15].

For large-scale hydrostatic flows, the relevant forcing terms are advection, pressure and Coriolis
acceleration. The wetting and drying process is often of major importance in, e.g. storm surge
simulations where the location of a moving shoreline is used to predict the extent of an inundation.

A newly developed numerical algorithm is always tested against the solution of known flow
problems and verified with measurements. Comparisons of the computed results with analytical
solutions are also carried out in a few particular cases such as those arising from the linear shallow
water theory (see, e.g. Reference [7]). Verifications and validations of numerical models for two
and three-dimensional shallow water models is an endless process because of a large variety of
complex phenomena that are not all present at the same time in each specific application.

In a paper published by Thacker [16], some exact solutions to the nonlinear, two-dimensional
shallow water equations were provided where advection, pressure and Coriolis acceleration could
all be given a relatively high importance by an appropriate choice of the free parameters. In all
cases a moving shoreline was determined as part of the solution.

Numerical treatment of nonlinear advection, pressure and Coriolis terms is often uneasy when
stability, accuracy and efficiency are sought. Accurate simulation of wetting and drying is even more
difficult especially when the inundation area is relatively large (see, e.g. References [12, 17–19]).

In this paper, the analytical solutions presented by Thacker [16] are reconsidered and extended to
three-dimensional hydrostatic flow problems where the vertical component of the velocity, though
small, may have a crucial role. These analytical solutions are proposed as a standard against which
the results of three-dimensional numerical models could be compared.

A recently developed semi-implicit finite difference—finite volume method (see Reference [7]) is
then considered and applied. The resulting numerical solutions for the two and three-dimensional
test cases are compared with the corresponding analytical solutions. Excellent agreements are
obtained for the velocity components and for the resulting water surface elevation. Comparison
of the computed inundation area also shows a good agreement with the analytical solution with
degrading accuracy when the inundation area becomes relatively large.

In Section 2 the governing two-dimensional equations for inviscid shallow flows are derived
from the more general three-dimensional hydrostatic equations to show that any solution of the
two-dimensional equations also satisfy the corresponding three-dimensional counterpart and the
resulting vertical component of the velocity is a linear function of the vertical coordinate. In
Section 3 a two-dimensional numerical model is applied and the corresponding numerical results
are compared with the known analytical solution. In Section 4 the three-dimensional extension
of this numerical model is applied and the resulting numerical solution is compared with the
three-dimensional analytical counterpart. The paper is concluded with a discussion on the relative
importance of the accuracy of a given numerical model and the validity of governing equations.

2. TWO AND THREE-DIMENSIONAL SHALLOW WATER EQUATIONS

The governing three-dimensional equations are the Reynolds averaged Navier–Stokes equations
that express the physical principle of conservation of momentum and water volume. Under the
assumption that the flow is inviscid and hydrostatic, these equations (see, e.g. Reference [7]) are:

ut + uux + vuy + wuz + g�x − f v = 0 (1)
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vt + uvx + vvy + wvz + g�y + f u = 0 (2)

ux + vy + wz = 0 (3)

where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the velocity components in the horizontal x ,
y and vertical z-directions, respectively; g is the gravity acceleration; �(x, y, t) is the free-surface
elevation and f is the Coriolis parameter.

Assuming bottom impermeability, the normal component of the velocity at the sea bed must
vanish. This is expressed by the following kinematic condition:

uhx + vhy + w = 0 at z =−h (4)

where h(x, y) is the bathymetry measured from the undisturbed water surface.
The kinematic condition at the free-surface is given by

�t + u�x + v�y = w at z = � (5)

The two-dimensional shallow water equations are derived by integrating Equations (1)–(3) over
depth. Thus, after using the boundary conditions (4)–(5), one gets

(HU )t + (HUU )x + (HUV )y + gH�x − f HV + R1 = 0 (6)

(HV )t + (HUV )x + (HVV )y + gH�y + f HU + R2 = 0 (7)

�t + (HU )x + (HV )y = 0 (8)

where H(x, y, t) = h(x, y) + �(x, y, t) is the total water depth; U (x, y, t) = (1/H)
∫ �
−h u dz and

V (x, y, t) = (1/H)
∫ �
−h v dz are the vertically averaged horizontal velocities and

R1 =
[∫ �

−h
(u −U )2 dz

]
x

+
[∫ �

−h
(u −U )(v − V ) dz

]
y

(9)

R2 =
[∫ �

−h
(u −U )(v − V ) dz

]
x

+
[∫ �

−h
(v − V )2 dz

]
y

(10)

The two dimensional, vertically integrated shallow water equations for frictionless flows are
obtained from (6)–(8) after standard approximations of local velocities with their vertical average,
so that R1 and R2 are neglected and the two-dimensional shallow water equations are assumed to
be

Ut +UUx + VUy + g�x − f V = 0 (11)

Vt +UVx + VVy + g�y + f U = 0 (12)

�t + (HU )x + (HV )y = 0 (13)

The set of Equations (1)–(5) and (11)–(13) for the three and two-dimensional shallow water
flow, respectively, are quite difficult to solve numerically because the stabilizing terms arising from
viscosity and bottom friction have been neglected.
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It is worth noting that if u, v, w and � are exact solutions of the three-dimensional equations
(1)–(5) and u and v are independent from the vertical coordinate z, then the vertical component
of the velocity can be derived from Equations (3) and (4) and is given by

w = w(−h) −
∫ z

−h
(ux + vy) d�

= −uhx − vhy − (ux + vy)(z + h) (14)

In this case, Equations (9)–(10) imply R1 = R2 = 0, thusU = u, V = v and � are also exact solutions
of the two-dimensional equations (11)–(13).

Vice versa, if U , V and � are exact solutions of the two-dimensional equations (11)–(13), then
u =U , v = V and � are also exact solutions of the three-dimensional equations (1)–(5) with w

given by Equation (14).
In general, however, R1 and R2 are nonzero. This is typically the case when vertical viscosity,

bottom friction and wind shear are considered. In this case the two-dimensional shallow water
Equations (11)–(13) include an approximation that results from the assumption R1 = R2 = 0.

3. TWO-DIMENSIONAL FLOW WITH PLANAR FREE-SURFACE

The two and three-dimensional flows to be considered take place in a basin described by a
paraboloid of revolution given by

h = h0

(
1 − x2 + y2

L2

)
(15)

where h0 and L are positive constants. The equilibrium shoreline, determined by the condition
h = 0, is a circle of radius L .

In such a basin, assuming a periodic flow with planar free-surface, Thacker [16] derived two
basic, nontrivial solutions given by

U =−�� sin�t (16)

V = ± �� cos�t (17)

� =�
h0
L2

(2x cos�t ± 2y sin�t − �) (18)

where the constant � determines the amplitude of the motion and � is the frequency. For a specified
frequency �, with �>| f |, the radius of the equilibrium shoreline is given by

L =
√

2gh0
�(� ± f )

(19)

From Equation (18) it is clear that the free-surface is a linear function of x and y at all times.
Moreover, from Equations (15) and (18), at every time, the moving shoreline is a circle satisfying
the equation H = h + � = 0, that is,

(x − � cos�t)2 + (y ∓ � sin�t)2 = L2 (20)
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hence the motion is such that the centre of the circle orbits the centre of the basin. The wet area
is then a constant Awet = �L2 and the total area where the flow takes place is Atot = �(L + �)2.

Although the analytical solution (16)–(18) is defined and satisfies the shallow water Equations
(11)–(13) over the entire (x, y) plane, these equations are of hyperbolic type only in the region
where H>0, that is, inside the circle defined by Equation (20). Moreover, the subcritical flow
regime (U 2 + V 2<gH ) is confined inside the inner circle given by

(x − � cos�t)2 + (y ∓ � sin�t)2 = L2

(
1 − �2�2

gh0

)
(21)

and it is supercritical elsewhere. Of course, if �2�2>gh0 the flow is everywhere supercritical.
The analytical solution (16)–(18), though relatively simple, represents a severe test case for most

two dimensional methods (see, e.g. Reference [19]). One major difficulty arises from the absence
of bottom friction and horizontal viscosity. In fact, when properly discretized, these terms have a
stabilizing effect on the corresponding numerical solution. Another major difficulty is the correct
determination of the wet region with acceptable accuracy.

The free parameters h0, f,� and � can be chosen in a variety of ways to give different
emphasis to the forcing terms. Moreover, since U and V are independent of x and y, this solution
also satisfies the linearized shallow water equations obtained from (11)–(13) by neglecting the
horizontal advective terms:

Ut + g�x − f V = 0 (22)

Vt + g�y + f U = 0 (23)

�t + (HU )x + (HV )y = 0 (24)

Thus, for example, to test a numerical scheme for the pressure terms, one can assume f = 0
and attempt to approximate (16)–(18) by solving the simplified Equations (22)–(24). Next, if
the nonlinear advective terms are included into the numerical method, one can explore possible
inaccuracy introduced by the advective scheme. Finally, the above tests can be completed by using
a nonzero Coriolis parameter.

For illustrative purpose, the three-dimensional numerical model described in Reference [7]
will be considered by specifying only one vertical layer in order to solve the two-dimensional
shallow water Equations (22)–(24). This is an efficient semi-implicit finite difference-finite volume
algorithm that uses unstructured orthogonal grids (see Reference [7] for details).

As an example, some realistic values corresponding to a typical environmental flow will be con-
sidered. Thus, by setting h0 = 50m, a latitude of 45◦North and � = 2�/(12× 3600), the resulting
wave period is T = 12 h and, from Equation (15), one has L = 164.69 km. Moreover, �= L/10 is
chosen.

Since the chosen grid may have a significant influence on the resulting numerical accuracy,
in generating an unstructured model grid it is always recommended to properly account for the
given bottom topography and for the expected flow field in order to reduce the discretization error
(see, e.g. References [7, 8]). With this objective, an unstructured orthogonal grid is constructed
by taking mixed, triangular and quadrilateral polygons in such a fashion that their vertices all
lie on concentric circles equally spaced at a distance �R = (L + �)/N and such that their sides
never exceed �R (see Figure 1). By choosing N = 220, the resulting grid contains Np = 295 061
polygons and Ns = 588 080 sides.
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Figure 1. Unstructured orthogonal grid.
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Figure 2. Velocity time series at x = 100 km (left) and at x = L (right).

Starting with the initial conditions taken from (16)–(18) with t = 0, the numerical solution is
computed for two time periods with a time step �t = 60 s. Figure 2 shows the time series of the
computed and the exact values of U (x, 0, t) at x = 100 km and x = L , respectively. Figure 3 shows
the time series of the computed and the exact free-surface elevation �(x, 0, t) at x = 100 km and
L , respectively. The small damping observed in the numerical results is due to the chosen value for
the implicitness factor (� = 0.6) of the model time discretization (see Reference [14] for details).
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Figure 3. Free-surface elevation time series at x = 100 km (left) and at x = L (right).

It is to be noted that, the location x = L becomes dry during half period. Accordingly, during
the dry phase the computed velocities and the total water depth at this station are zero simply
because the numerical model does not perform any computation in the dry area. Also to be noted
is a general good agreement between the analytical and the numerical solutions except at x = L
during the transitions from wet to dry and from dry to wet. The numerical error on the computed
wet area Awet = �L2 remains below 0.6% during the entire simulation.

These results tend to deteriorate for longer simulations because the stabilizing terms given
by bottom friction and horizontal viscosity are not included. Far more difficult to model is the
analytical solution corresponding to relatively large values of � because of the corresponding
larger area that is subject to wetting and drying. In a realistic situation where bottom friction is
considered this would have a stabilizing effect especially in the shallowest part of the basin where
wetting and drying takes place.

As stated above, since U, V and � as given by (16)–(18) are exact solutions of the two-
dimensional equations (11)–(13), then u =U , v = V and � are also exact solutions of the three-
dimensional equations (1)–(5) with w given by Equation (14) which, in this case, yields

w =−uhx − vhy = 2h0
L2

��(−x sin�t ± y cos�t) (25)

Thus, this analytical solution can be used as a test case for three-dimensional numerical models.
Note that in this specific example, since u and v are independent from the spatial location, the

vertical component of the velocity (25) is independent from the vertical coordinate z but is related
to the bottom topography.

4. THREE-DIMENSIONAL FLOW WITH PARABOLIC FREE-SURFACE

In a second test case the basin configuration described by Equation (15) is reconsidered and
a nontrivial analytical solution whose free-surface is a parabola of revolution was given in
Reference [16] for the two-dimensional shallow water Equations (11)–(13). This solution, here
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extended to the three-dimensional equations (1)–(5), is given by

u = 1

2(1 − A cos�t)

[
�x A sin�t − f y

(√
1 − A2 + A cos�t − 1

)]
(26)

v = 1

2(1 − A cos�t)

[
�yA sin�t + f x

(√
1 − A2 + A cos�t − 1

)]
(27)

w = �A sin�t

1 − A cos�t

(
2h0

x2 + y2

L2
− h0 − z

)
(28)

� = h0

{ √
1 − A2

1 − A cos�t
− 1 − x2 + y2

L2

[
1 − A2

(1 − A cos�t)2
− 1

]}
(29)

where, by setting �0 = �(0, 0, 0), the constant A is given by

A= (h0 + �0)
2 − h20

(h0 + �0)2 + h20
(30)

and, for given �> f , L is given by

L =
√

8gh0
�2 − f 2

(31)

The horizontal velocity field (26)–(27) and the free-surface elevation (29) are exactly the same
as derived by Thacker for the two-dimensional shallow water equations (see Reference [16] for a
detailed derivation). Then, as above, u, v and � are extended to the three-dimensional equations
(1)–(5) while the vertical velocity component (28) is derived from Equation (14). An a posteriori
verification that (26)–(29) is indeed an exact solution of Equations (1)–(5) can be obtained upon
direct substitution of (26)–(29) into (1)–(5).

From (26)–(29), this exact solution can be written in polar coordinates (r, ϑ) as

ur = �r A sin�t

2(1 − A cos�t)
(32)

uϑ = f r

2(1 − A cos�t)

(√
1 − A2 + A cos�t − 1

)
(33)

w = �A sin�t

1 − A cos�t

(
2h0

r2

L2
− h0 − z

)
(34)

� = h0

{ √
1 − A2

1 − A cos�t
− 1 − r2

L2

[
1 − A2

(1 − A cos�t)2
− 1

]}
(35)

Equations (32)–(33) show that the radial component of the velocity ur is independent of the
Coriolis acceleration while the tangential component uϑ is proportional to f .
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Figure 4. Time series of ur at r = 300 km (left) and at r = L (right).

The shoreline is a circle whose centre coincides with the centre of the basin and the time
dependent radius R is given by

R2 = L2 1 − A cos�t√
1 − A2

(36)

Thus, the permanently wet area is confined within the disk r2<L2[(1 − A)/
√
1 − A2] and the

wetting and drying takes place within the ring L2[(1 − A)/
√
1 − A2]�r2<L2[(1 + A)/

√
1 − A2].

The analytical solution (26)–(29) is defined and satisfies the three-dimensional shallow water
Equations (1)–(5) in the entire (x, y, z) space but these equations are of interest only in the wet
region where H>0, that is, inside the circle x2 + y2 = R2 and for −h(x, y)<z<�(x, y, t).

Clearly the exact solution (26)–(29), as well as the corresponding wet area delimited by (36),
is strongly influenced by the chosen bottom topography (15) through the constants h0 and L .

The free parameters h0, f,� and �0 can be chosen in a variety of ways and some realistic values
corresponding to a typical environmental flow will be considered. Thus, by setting h0 = 50m,
�0 = 2m, a latitude of 45◦North and �= 2�/(12× 3600), the resulting wave period is T = 12 h
and from Equation (31) one has L = 610 km.

An unstructured orthogonal grid is constructed as before by taking mixed, triangular and quadri-
lateral polygons in such a fashion that their vertices all lie on concentric circles equally spaced
at a distance �R1 to cover the permanently wet area (see Figure 1) and a finer mesh obtained
by using �R2<�R1 to cover the outer ring where wetting and drying takes place. The ver-
tical z-coordinate is discretized with 10 layers separated by constant level surfaces located at
zk+1/2 = 5k − 50, k = 1, 2, . . . , 9.

Starting with the initial conditions taken from (26), (27) and (29) with t = 0, the numerical
solution is computed for two time periods with a time step �t = 100 s. The numerical model used
is again the semi-implicit algorithm described in Reference [7].

Figure 4 shows the time series of the computed and the exact values of ur at r = 300 km and L ,
respectively. At the same spatial locations the time series of uϑ and � are shown in Figures 5 and 6,
respectively. It is to be noted that, the location r = L becomes dry during half period. Accordingly,
during the dry phase the computed velocities and the total water depth at this station are zero.
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Figure 5. Time series of uϑ at r = 300 km (left) and at r = L (right).
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Figure 6. Free-surface elevation time series at r = 300 km (left) and at r = L (right).

Figure 7 shows the time series of the computed and the exact values of w(r, 0, −5, t) at
r = 300 km. There is no vertical component of the velocity computed at r = L because, with the
present vertical discretization, only one layer is present at r = L .

It is worth noting a general good agreement between the analytical and the numerical solutions
except at r = L during the transitions from wet to dry and from dry to wet. The relatively high
values for uϑ are due to the Coriolis forcing at this large scale. Also, the resulting small size of
the vertical component of the velocity is due to the relatively large size of the horizontal domain.
Though small, accurate determination of the vertical component of the velocity may be extremely
important when it is to be used to compute scalar transport that determine fluid stratification. This,
however, may not be easy because in hydrostatic models w is diagnostically determined from u
and v by using the discrete incompressibility condition. Thus, any numerical error in u and v will
unavoidably be reflected in the accuracy of w.

Finally, Figure 8 shows the computed fraction of the wet area. A slight phase shift of the
computed results can be observed.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1049–1062
DOI: 10.1002/fld



ANALYTICAL AND NUMERICAL SOLUTION OF 2D AND 3D HYDROSTATIC FLOWS 1059

-0.00015

 0

 0.00015

 0  6  12  18  24
Time (h)

V
el

oc
ity

 (
m

/s
)

’analytical’
’computed’

Figure 7. Time series of w at r = 300 km.
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The numerical solution would deteriorate in longer simulation because the stabilizing terms
given by bottom friction and horizontal viscosity are not included. Far more difficult to model
are the analytical solutions corresponding to relatively large values of �0 because of the resulting
larger area that is subject to wetting and drying. In a realistic situation where bottom friction is
considered this would have a stabilizing effect especially in the shallowest part of the basin where
wetting and drying takes place.

The above example is reconsidered in a much smaller time and horizontal scale. Specifically,
h0, �0 and f have not been changed but a higher frequency �= 2�/12 is imposed so that the
wave period is now T = 12 s. Equation (31) then yields L = 120m. The previous unstructured
orthogonal grid has been resized accordingly.

Starting with the initial conditions taken from (26)–(29) with t = 0, the numerical solution is
computed for two time periods with a smaller time step �t = 0.028 s. The numerical accuracy
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Figure 10. Time series of w.

obtained in this test is qualitatively the same as in the previous example. Figure 9 shows the time
series of the computed and the exact tangential horizontal velocity uϑ(60, 0, −5, t) and Figure 10
shows the time series of the vertical component of the velocity at the same location. It is to be
noted the good agreement between the exact and the numerical solution. Moreover, at this small
scale, the tangential velocity component resulting from the Coriolis forcing term is, as expected,
much smaller whereas the vertical component of the velocity is now much larger than the one of
the previous example.

As final simulations, these three-dimensional problems have been reconsidered with identical
grids, initial conditions and flow parameters but using a more general nonhydrostatic model
described in Reference [15]. With no surprise the computed results obtained in the large scale are
almost identical to the early hydrostatic results already displayed in Figures 4–8. This is a clear
indication that the hydrostatic approximation that lead to the governing equations (1)–(3) is valid
at this scale.
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A similar nonhydrostatic simulation performed on the last example with smaller horizontal scale,
however, produced totally different results as shown (with dotted lines) in Figures 9 and 10. These
results indicate that, although hydrostatic calculations are in good agreement with the corresponding
analytical solution, this solution is physically incorrect because the hydrostatic approximation does
not apply in such a small horizontal scale. This example confirms that in small scale problems
the Coriolis acceleration is usually negligible while the nonhydrostatic pressure term now plays a
crucial role (see References [15, 20] for further details).

5. CONCLUSIONS

Some nontrivial analytical solutions of the inviscid, two-dimensional shallow water equations have
been extended to three dimension and are proposed as test cases for three-dimensional numerical
models. Advective, pressure, and Coriolis acceleration are the only forcing terms for these tests.
The tests are further complicated by the wetting and drying nature of the problems. Appropriate
choice of the free parameters can give different importance to each driving force which can be
tested individually.

These test problems are considered to be quite effective and severe for any numerical model
because the often stabilizing contribution of viscosity and bottom friction are not included.
A specific semi-implicit numerical scheme is applied in both, the two and the three-dimensional
formulations and the computed solution is compared with the exact counterpart. Some examples are
illustrated to show how accurate the velocity field and water surface elevation can be reproduced.

It has been verified that, in large horizontal scale, these results can also be reproduced with
similar accuracy and negligible differences by using a slower, nonhydrostatic Navier–Stokes model.
This confirms that the hydrostatic approximation is valid and computationally convenient at this
scale.

It is finally shown that an accurate reconstruction of the analytical solution of the three-
dimensional hydrostatic models (1)–(5) can be produced also in relatively small horizontal scale.
This solution, however, is physically incorrect because the hydrostatic approximation does not
apply to small horizontal scales where physical processes are better described by the Navier–
Stokes equations.
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